5068教学资源网 > 潜能开发 > 脑力开发 > 思维训练 >

如何培养中学生的数学逻辑思维能力

2018-05-07 15:18:45
|梓荣

  数学,是一门研究现实世界的空间形式和数量关系的学科,它具有抽象性严密性和应用的广泛性等特征,现代教学论认为:数学教学是数学思维活动的教学,而不仅是数学活动的结果,即数学知识的教学,数学教育的任务是形成那些具有数学思维特点的智力活动结构。以下是小编分享给大家的关于写如何培养中学生的数学逻辑思维能力,一起来看看吧!

  一、逻辑思维的涵义及特点

  人们在认识过程中借助于概念、判断、推理等思维形式能动地反映客观现实的理性认识过程,又称理论思维。它是作为对认识着的思维及其结构以及起作用的规律的分析而产生和发展起来的。只有经过逻辑思维,人们才能达到对具体对象本质规定的把握,进而认识客观世界。它是人的认识的高级阶段,即理性认识阶段。

  数学课培养逻辑思维能力,主要是通过数学课的教学,培养学生自觉的掌握并运用逻辑规律进行思维的能力,也就是遵循逻辑规律,明确的使用概念,恰当地下判断,合乎逻辑地进行推理的能力。

  逻辑思维的特点是以抽象的概念、判断和推理作为思维的基本形式,以分析、综合、比较、抽象、概括和具体化作为思维的基本过程,从而揭露事物的本质特征和规律性联系。抽象思维既不同于以动作为支柱的动作思维,也不同于以表象为凭借的形象思维,它已摆脱了对感性材料的依赖。

  二、逻辑思维能力的作用及基本形式

  逻辑思维能力的作用表现在:有助于我们正确认识客观事物;可以使我们通过揭露逻辑错误来发现和纠正谬误;能帮助我们更好地去学习知识;有助于我们准确地表达思想。 逻辑思维的基本形式则包括概念、判断、推理。

  概念是通过对认识对象特有属性的反映所指对象的思维形式,其表现形式相当于语言中的词语和词组。判断是对认识对象的情况有所断定的思维形式,它是由概念联结而成的,表现形式相当于语言中的句子。推理则是根据一些判断而得出另一个判断的思维形式,它是判断与判断的联结、过渡,相当于语言中“因为”和“所以”之间的语句关系。

  三、数学教学中学生逻辑思维能力的培养

  要培养学生的逻辑思维能力,就必须把学生组织到对所学教学内容的分析和综合、比较和对照、抽象和概括、判断和推理等思维的过程中来。

  中学生学习数学的主要能力就是逻辑思维能力。培养逻辑思维能力是中学数学教学的主要目的之一。重视培养学生的逻辑思维能力是提高教学质量的重要条件。因此我们在教学过程中应重视学生逻辑思维能力的培养,让学生在思维过程中正确运用各种思维形式,即概念、判断和推理,遵循思维的规律,保证思维的确定性、一贯性和不矛盾性,使学生凭借已有的知识,合乎逻辑地获得新知识,教师在数学课的教学中,也应把起码的形式逻辑知识和辨证逻辑知识贯穿其中。以形式逻辑知识为主,兼顾一点辨证逻辑知识。通过逻辑思维教学,使学生深刻地揭示概念、判断、推理的本质,从而提高学习效率。

  四、在代数教学中培养学生的逻辑思维能力

  数学中的逻辑思维能力是根据正确的思维规律和思维形式,对数学对象的属性进行分析综合、抽象概括、推理证明的能力。而逻辑思维能力的培养直接体现在推理论证能力上。在代数教学中,数、式、方程的运算是重点,其中在运算过程中要求步步有理、有据,否则就无法进行,每一步的依据是什么呢?无非就是已知的定义、定理、性质、法则、公式等。整个运算过程就是一个逻辑推理的过程。所以我们要加强对学生的逻辑思维能力的培养。

  五、加强概念的理解,奠定判断和推理基础

  让学生理解概念的本质,掌握知识的逻辑联系。 这种图示法,在教学中坚持运用,不仅可以使学生掌握概念的本质特征,而且有助于学生学会从整体上去认识知识之间的逻辑联系的方法,也能帮助学生形成和建立科学的认知结构。

  在学习概念时,有一部分学生并没有真正的理解概念的意义,而是根据老师的要求将其一字不漏的背下来,没有真正的理解它的内涵及外延,不从定义的实质出发去思考问题,而是从形式上观察作出判断。

  六、利用判断练习,培养学生的判断能力

  判断是思维的基本形式。解题中要作出正确的判断并不是一件容易的事。这就要求在解每一道题的时候,事先必须进行周密的思考。仔细观察,找清运算依据,进行多方面思考。是否与客观现实相符合。

  七、在法则、性质、公式的教学中培养学生的逻辑推理能力

  逻辑推理能力是逻辑思维能力的核心,数学中的逻辑思维能力是根据正确的思维规律和思维形式,对数学对象的属性进行综合、抽象概括、推理证明的能力。而逻辑思维能力的培养直接体现在推理论证能力上。

  八、在学习法则、性质中培养学生逻辑推理能力

  课本中不少法则、性质的推导都是培养逻辑推理的极好材料。

  1、灵活运用公式培养学生逻辑推理能力

  在因式分解的教学中,导出公式并不难,可是在具体的题中运用公式时学生就犯愁了。掌握公式的结构和公式中字母的含义,正确地运用公式,既能提高运算能力,也能培养学生的逻辑思维能力。

  2、 重视解题教学是培养学生的逻辑思维能力的有效方法并发现隐含条件,培养学生正向思维能力。教师在教学中要引导学生积极的思维,并且有多种思维方式,从已知条件推出所证的结果,这是数学教学的基本思维方法之一。

  3、培养学生逆向思维

  与通常由条件推知结论的思维相反,先给出某个结论或答案,再去找使之成立的条件,这种思维不仅可以加深知识的理解,而且还能发现一些新规律,引起学生的兴趣和思考。逆向思维,对培养学生积极、主动、独立和创造性思维很有价值。在数学教学中,“解题”是一种最基本的活动形式,无论是数学概念的形成、数学命题的理解、数学方法与技巧的掌握,还是学生能力的培养与发展,都要通过解题活动来完成。同时“解题”也是评价学生认识水平的重要手段。波利亚说:“中学数学教学的首要任务就是加强解题训练”,“掌握数学就意味着解题”。能否正确的解题其中逻辑思维能力起着关键的作用。

  4、在几何教学中培养学生的逻辑思维能力

  逻辑思维能力的关键就是培养学生的逻辑推理能力,其途径不外乎就是通过定理的教学、解答例题的教学和学生解答习题这几个方面。比如:使学生在命题的证明中填注理由,定理教学中,在老师的启发引导下,充分让学生自己积极思考,以寻求证明思路,这是首要的培养学生逻辑推理能力的措施。包括分析法(要什么、有什么、缺什么、补什么)和综合法(从已知条件入手,通过逻辑推理,最后得到结论,即由因导果)的推理方法的运用。此外在教学中,不论是定理教学,还是在解答论证题的教学中,必须采用先作口头论证,而后写出“证明”,这是培养他们按照逻辑顺序思考的能力的措施。

  要使学生掌握各种推理方法,虽然有些定理可以用直接法来证明,但在教学中,在学生可接受的前提下,有的定理也可用间接法来证明。比如:在三角形的教学中,“大边对大角”和“大角对大边”这两个定理的证明,都是用的直接法。其实也可用间接法推证。

  九、在平面几何中培养学生的逻辑思维能力

  教学中,有计划的培养学生的逻辑思维能力,对培养学生独立分析问题、解决问题的能力、提高教学质量,有着极其重要的作用。平面几何是初中的教学重点。很多学生面对题目却无从下手。有的心里明白但说不清楚;有的证明过程烦琐,逻辑上缺乏严谨。而真正能做到思维合理,推理论证正确的则为数不多。其主要原因就是逻辑思维和逻辑推理不到位。学生在学习不仅是学知识更重要的是学知识的方法。所以必须培养他们思考问题的方法——逻辑思维。

  1、在立体几何中培养学生的逻辑思维

  注意直观演示,发展空间想象力,展现学生的逻辑思维能力是教学立体几何的重要任务 几何,起码要懂得把事物、模型、图形联系起来。因此,在教学中要注意让学生自己去观察、摆弄和制作空间图形的模型,由实物、模型化出图形,再由图形想象出模型、实物,这对培养学生的想象能力发展空间观念有着重要的作用。有时,对某一形象难于领会,通过简单的演示,也会一目了然了。

  2、沟通不同部分知识之间的联系,开拓学生的思维能力

  不同部分知识内容之间,往往有着科学的内在联系,能发现他们并能正确的运用他们来分析问题和解决问题,可使一些问题化难为易,也有利于引起学生的学习兴趣。拓宽学生的思维视野。逐步培养学生的发散思维、逻辑思维及创新思维。

  3、列方程解应用题培养学生的逻辑思维

  代数在几何中的应用

  向量在几何中的应用

  将几何综合推理和向量代数运算推理有机地结合起来可以发展学生的智力、培养学生的能力,使他们的思维活动开辟地更广阔。向量运算,可有效地揭示空间(或平面)的图形的位置和数量关系。由定性研究变为定量研究,是数形结合思想的深化和提高。也是培养学生逻辑思维能力的有效方法。

  十、将数学知识运用到实际生活中培养学生的逻辑思维能力

  本文主要从代数教学、几何教学和沟通不同部分知识之间的联系三方面来研究,然而,逻辑思维能力的培养并不是一朝一夕的事,有多种渠道多种方法。只要我们掌握了一定的基础知识,并能够注意观察审题,准确找到题目中的解题信息,然后进行综合分析,形成正确的逻辑思维就是很自然而然的、水到渠成的事情。当然在教学中培养学生的逻辑思维能力除了在一些方法上和技巧上加强训练外,还应多启发学生多想、多练、多问,并开展多种形式的讨论,这有利于培养学生进行逻辑思维的习惯。只有注意培养数学逻辑思维能力,才能形成正确的解题方法和解题技巧,才能真正从繁琐复杂的数学题海中解脱出来,只有经过训练、培养,形成正确的逻辑思维方式方法,才能做到以不变应万变,才能在解数学综合题中做到“游刃有余”。随着教育改革的不断深入,更要重视学生综合能力的培养,数学教育只有使学生在思维能力、情感态度与价值观等方面得到可持续的提高和发展。才能实现“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展 ”的目的。只有这样,我们才能真正做到“授人以渔”而不是“授人以鱼”。

相关推荐

热门推荐

590272
|